
2024 Election Model Methodology
Alex Bass

2024-01-04

Introduction

Last US Presidential Election, I created a model that was a t-test of the 5 most recent quality
polls by state. This time, I wanted to apply a more rigorous approach using a heirarchal
bayesian linear regression.

Model Choice Justification

T-Test

While in the end, my last model performed decently well, a simple t-test can’t control for
variables such as survey audience, survey question type, or survey distribution type. So, if you
are only performing t-tests, you have to make one of two concessions:

1. use only a fraction of the data (e.g. I will only use likely-voter polls)
2. use all data and try and implement corrections (e.g. all voter polls over estimated Trump

by 4 percentage points, so subtract 4 before t-test). However, this sacrifices some statis-
tical rigor since it may be an oversimplification of the effects. Things likely have changed
in the last 4 years and the true effect of total population choice and voter choice will
vary from poll to poll.

I tried to do the latter last time, but then the question becomes how granular of changes
are you going to correct for? For example, If I want to correct for audience, question type,
pollster effects, survey mode, etc. the list starts to add up fast. Can I correct for all of these?
Also, what if there are omitted variables interacting with these variables and the dependent
variable? For instance, maybe registered voters look different in Florida than they do in Maine
etc. These questions present challenges for this methodology.

1



Hierarchal Model

This election, I am opting for a hierarchal regression model for a few reasons:

1. Unlike a T-Test, we can naturally control for important variables in our predictions.
2. We can use the natural structure of the data to our advantage. In the electoral college,

elections are won by winning states. Each state is unqiue in makeup and attitudes
toward candidates and parties. Allowing our model intercept to vary by states helps
us account for their differences while utilizing a larger n-size and use information from
control variables across states.

3. Predictions can be easily generated for this type of model.

Model Structure

Given the nature of the dependent variable, a percentage between 0-100, using a beta regression
is ideal. In a previous version of this project, I used a typical linear regression with a gaussian
distribution. However, using this method, it is possible to get both negative predictions and
predictions over 100 which do not make sense in our problem context. For this reason, I
decided to change to using beta regression where the predictions will be bounded between
(0,1).

The model is structured in the following manner:

𝑇 𝑟𝑢𝑚𝑝𝑉 𝑜𝑡𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡 ∼ ℬ(𝑎, 𝑏)
We assume 𝑇 𝑟𝑢𝑚𝑝𝑉 𝑜𝑡𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡 is beta distributed with parameters 𝑎 and 𝑏.

𝜂 = 𝛽𝑠𝑡𝑎𝑡𝑒 + 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ⋅ 𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

𝜇 = 𝑔(𝜂)
̂𝑎 = 𝜇 ⋅ 𝜙

̂𝑏 = 𝜙 − 𝑎

Lets define some of these terms:

• 𝜇 represents our model mean
• 𝜙 represents our model precision
• 𝛽𝑠𝑡𝑎𝑡𝑒 represents the intercept term for each state

• 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 and 𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 represent the control coefficients and data sampled in our model.

• 𝑔() represents the logit function which is our link function

2



𝛽𝑣𝑎𝑟 ∼ 𝒩(𝜇𝑣𝑎𝑟, 𝜎2
𝑣𝑎𝑟)

In the model, I assume each independent variable in our model is normally distributed with a
unique 𝜇𝑣𝑎𝑟 and 𝜎𝑣𝑎𝑟.

Priors

I initially estimated the model with uninformative priors for independent variables with 𝜇𝑣𝑎𝑟 =
0 and 𝜎𝑣𝑎𝑟 = 1 across all independent variables and each 𝛽𝑠𝑡𝑎𝑡𝑒. After an initial run, for future
runs, I used the parameter estimates for 𝜇𝑣𝑎𝑟 and 𝜎𝑣𝑎𝑟 the day previous as priors in the model
for the current day for each independent variable (see callout note below). I did this for two
reasons:

1. The simulation percentage won tracked over time can be a bit unstable and jumpy. Using
the previous days estimates as priors for the current day, hopefully, would help stabilize
the and smooth the trendline over time.

2. The model will converge more easily and quickly with previously working priors. This
will help me not exceed any limits for running servers with github actions and therefore
have to pay.

Additionally, I set the prior for 𝜙 as normally distributed with mean as 100 and standard
deviation as 1. I set the prior for this term as positive because this term inluences both 𝑎 and
𝑏 which must be positive.

Note

After using the exact priors from the previous model for a few weeks, I noticed that
the priors were a bit too strong, so each day I use the previous mean and the previous
standard deviation multiplied by 15, so the model changes more flexibly over time. I
experimented with several different values as a multiplier, but settled on 15 tailored to
this specific problem.

Data Processing and Feature Engineering

Filtering to Quality Polls

Not all polls/pollsters are created equal and I want to make sure quality polls are informing
my model. Fortunately, FiveThirtyEight goes through the work or rating polls based on a
number of factors and assigning a letter grade (A+ thru D). In my code, I order the grades
and filter out C+ and below.

3



Dependent Variable

To simplify my model, I use a few cleaning steps. First of all, I am not interested in third
party candidates as they do not usually win elections. So in my model, I just am predicting
whether Trump will win each state (proportion > 50%) and assuming if Trump does not win,
Biden does. This of course does not match reality as it is possible for another candidate to
win, but not possible in my model.

Surely, you may be thinking of cases where there may be a right wing (or left wing) independent
candidate on the ballot who may take some of the vote, having perhaps a significant impact
on the state winner. This is an important thing to consider. So, to incororate this into my
model, I use third - party ballot questions and simply recale them to just Biden and Trump.
After rescaling, I include an indicator variable for these observations. An example is illustrated
below in Python:

#example code chunk
trump_perc = 40
biden_perc = 46
third_perc = 4

trump_perc_rescaled = trump_perc/(trump_perc + biden_perc)

print(f"Originally, Trump had {trump_perc}%, but after" \
" rescaling (excluding third party candidates)\n"\
f" he now has {round(trump_perc_rescaled,3)*100} %"\
" with Biden having the rest.")

Originally, Trump had 40%, but after rescaling (excluding third party candidates)
he now has 46.5 % with Biden having the rest.

With this method, third party questions are accounted for in the model as an indicator variable,
but also if a third party candidate is taking votes from one sie or the other, this is reflectedin
the rescaled number. In the example above, the third party candidate may be taking votes
from Trump.

Control Variables

Creating and including the right control variables can have a large impact on analyses for
better or for worse. Here is a table of control variables I include:

4



Var Description Type Justification
third party question Indicator Including a third party

question fundamentally
changes the obs. and should
be accounted for

Republican pollster Indicator House effects are documented
in research and affect our
dependent variables

Nsize in survey Integer In theory, we would want to
give more weight to polls
with higher sample sizes and
thus lower margins of error

Survey Mode One Hot Encoded Different modes reach
different populations and
these differences should be
accounted for

Survey Population One Hot Encoded Political surveys are typically
asked of one in three groups:
likely voter, registered voter,
all population. Each group is
different

Date Integer Time is an important
component in our model

Survey Quality Indicator I include this variable as a
way to account for survey
quality.

Note

I treat Survey Mode and Date slightly different than the others.

• For time, I include a sequential count of month since the first election polls for 2024
began.

• For survey mode, there are a lot of different categories and several categories are
quite sparse. So, I collapsed the sparse categories into “other” and kept the big
three: probability panel, online panel, and live phone.

5



Obtaining Predictions

Using pymc’s sample_posterior_predictive, I use curated out of sample data for prediction.
My settings are below:

Variable Data Justification
Date Set to final month I am interested in the latest

month in the model when
making predictions

Mode Set to Probability Sample Ad hoc analysis showed this
was most accurate

Pollster Set to Republican Given the liberal bias of
polls, I set this to republican
for a correction

Sample Size Set to 2000 2000 is not an uncommon
sample size and is a large one

Question Type Set to MultiCandidate These questions will account
for third party votes

Survey Grade Set to >= 2 Stars 538 recently changed their
pollster quality ranking.
Instead of a letter grade from
A-D its a number of stars
from 0.5 to 3. I predict using
greater than or equal to 2
stars representing more
quality polls and hopefully
better predictions.

Survey Population Set to Likely Voters Using population most likely
to turn out

Given these settings, I predict each state and post the results daily.

6


	Introduction
	Model Choice Justification
	Model Structure
	Data Processing and Feature Engineering
	Obtaining Predictions

