
Capstone: Fixing Broken Links in Wikipedia 1

Capstone: Fixing Broken Links in Wikipedia

Entity Resolution of Internet Archive Books and Wikipedia Citations

Alex Bass, Maxwell Jones

Spring 2023

DS 6015

Abbas Kazemipour

Github Repository: wiki2ia

https://github.com/acbass49/wiki2ia


Capstone: Fixing Broken Links in Wikipedia 2

Introduction

Wikipedia is one of the most popular online encyclopedias, with millions of articles

covering a wide range of topics. As a collaborative platform, Wikipedia relies on the

contributions of volunteer editors to maintain and improve its content. One of the most important

aspects of editing Wikipedia articles is ensuring that all citations and references are accurate and

up-to-date. However, broken links and missing citations are a common problem on Wikipedia,

which can lead to inaccurate or incomplete information. Using the Internet Archive (IA), a

digital library that contains millions of books, documents, and other media useful for finding and

accessing digital copies of books that are no longer in print or are otherwise unavailable (Books :

Free Texts : Free Download, Borrow and Streaming : Internet Archive, n.d.), we sought to match

each book citation with its corresponding IA link, ensuring the link does not break and provide

more value to Wikipedia users having access to books freely available on the Internet Archive.

Thus, this paper discusses the problem of broken book citations on Wikipedia and proposes a

machine learning methodology for fixing them by linking them to their appropriate Internet

Archive match.

Problem Description

Broken book citations on Wikipedia occur when a reference to a book leads to a dead link

or an incorrect URL. This problem is particularly challenging to fix because it requires finding

the correct version of the book that was originally cited. Many book titles have multiple editions

or are reprinted by different publishers, which can make it difficult to determine the correct

version of the book. To solve this, we aimed to build a machine learning model with various

natural language processing methodologies to correctly identify each Wikipedia book’s

corresponding IA link. In order to create a machine learning approach to identifying correct book



Capstone: Fixing Broken Links in Wikipedia 3

citation links, we first needed to obtain an appropriate dataset containing every book citation

from Wikipedia along with corresponding IA links.

Data Collection

For our Wikipedia book citations, we first downloaded all of Wikipedia, approximately

23 GB of text data. We then parsed through to only obtain citations of the book template,

filtering down our dataset to about 2.5 GB. Each book citation contained various categories,

though not every citation shared the same categories–some citations only contained the title,

while some citations contained many categories such as language and tertiary author. In total,

there were over 750 distinct categories (Wikipedia contributors, n.d.), with many categories

containing inconsistencies, such as the date and year categories both containing just the year the

book was published. In order to generalize our model, we decided to only use title, author,

publisher, and date of publication.

For our corresponding IA links, we searched every title, author, publisher, and date

combination gained from each Wikipedia book citation into the IA API. As the information

returned by the IA often included multiple different books, we joined every link returned for

each book citation search query–our model would then need to predict whether the link returned

by the search query was a match or not. Of course, the Wikipedia book citation sometimes would

not match with any of the IA resources returned, but as we found the IA to be our best source for

reliable links, we decided to move forward despite these occasional gaps, and having collected

our dataset, we were ready to start building our model.

Problems And Path To Solution

What is the ideal solution to this problem?

Meeting with the team at Internet Archive, we discussed that a solution would be a

matching algorithm between Wikipedia book citations and Internet Archive books that had a



Capstone: Fixing Broken Links in Wikipedia 4

99% percent likelihood of being a match if a match existed. In the end, they would like to apply

this algorithm to every book citation on Wikipedia that did not have a book link in hopes of

matching every possible freely available book in the Internet Archive to these citations. This

would help enrich the content of Wikipedia if more book citations had a link to a free copy of the

book cited.

In this model, the primary concern is reducing Type I error as much as possible, so as not

to litter Wikipedia book citations with links to incorrect books. This would also engender trust

between Wikipedia and Internet Archive allowing for possible working opportunities in the

future. Of secondary importance, we want low Type II error so that we miss as few matches as

possible.

What happens when we try to match text exactly?

When we first looked at this problem, the most reasonable and simplest solution was:

Why couldn’t we just match the characters exactly? The book titles that matched exactly would

be matches and those that didn’t would not be matches. However, the problem with this approach

is there are books with the same title. For example, there are many references in Wikipedia to

textbooks like “Principles of Biology.” As it turns out, there are several textbooks with this exact

title, so an exact match on title would not be useful. After we cleaned both titles (removing

special characters and setting all the cases to lower), these were our title exact matching results.

Method Train Precision Train Recall

100% Title Match 17.1% 87%

These results are hardly satisfactory when we are aiming for a 99% precision, so we would need

a better method. As we looked through the results, this led us to our first problem.

Problem 1: Duplicate Results Returned from the Internet Archive API



Capstone: Fixing Broken Links in Wikipedia 5

As we combed through the false positives, we noticed that many books were not coded as

matches when they actually were matches! They just had different Internet Archive links than the

ones in the wikipedia citation! (Remember: To build our test set, we gathered all the Wikipedia

book citations that already had Internet Archive links. We then queried these titles in the Internet

Archive API Online Book Database which provides a unique web link for each book. We then

deemed matches those records where the internet archive web link matched the wikipedia web

link in the book citation.) This is problematic because all of the duplicates would be flagged as

false in our training data when they were in fact true matches thereby creating bias. An example

of a duplicate in our data is shown below:

IA Book
Title

IA
Author

IA
Publisher

IA
Year

IA Link Wikipedia Book
Citation Link

Match

the growth
of
biological
thought
diversity
evolution
and
inheritance

ernst
mayr

Cambridge
, Mass. :
Belknap
Press

1982 archive.org/detail
s/growthofbiologi
c0000mayr

archive.org/detail
s/growthofbiologi
c00mayr

No

the growth
of
biological
thought
diversity
evolution
and
inheritance

ernst
mayr

Cambridge
, Mass. :
Belknap
Press

1982 archive.org/detail
s/growthofbiologi
c00mayr

archive.org/detail
s/growthofbiologi
c00mayr

Yes

Solution 1: “Golden Test Set”

To solve this problem, we pulled the first 100 Wikipedia citations with Internet Archive

Links and manually went through each result, marking all duplicates as matches in addition to



Capstone: Fixing Broken Links in Wikipedia 6

the link matches. We called this our “golden test set” of ~800 observations which is free from the

duplicate bias. Because of this bias in the training data, we expected to see lower performance on

model metrics in the training set and higher metrics in our golden test set. Applied to our

example above, in the golden set, both of the values in the match column are set to “Yes.”

Method Train Precision Train Recall Test Precision Test Recall

100% Title
Match

17.1% 87% 39.5% 87%

After compiling our “Golden Test Set,” we see that the test precision is twice as high as

the training precision after recoding duplicate records. However, 40% precision is still quite low

compared to our goal.

What happens if we incorporate other columns to help with matching such as author and publishing year?

There are 750 possible citation information fields to include from a Wikipedia citation,

but only around 10 exist in the Internet Archive. Of those existing matching fields, most of the

data are missing most of the time. We decided to use 4 fields that exist in both and have a less

missing values: Title, Author, Publisher, and Date. We hypothesized that these fields should be

sufficient information to tell whether a book was a match or not. Though even among these

fields, there was often missing data.

Variable Percent Missing

Title 0%

Author 34.7%

Publisher 11.4%

Date 32%



Capstone: Fixing Broken Links in Wikipedia 7

While we could just drop this missing data and move on to modeling, book citations from

wikipedia are often missing this information. So, our solution must be flexible enough to handle

missing data in every feature except the title.

Continuing with our cutoff approach, if we exactly matched combinations of title, year,

author, and publisher, our results are shown below:

Method Train Precision Train Recall Test Precision Test Recall

100% Title 17.1% 87% 39.5% 87%

100% Title &
Author

18% 52% 40.8% 56%

100% Title &
Publisher

15% 5% 75% 14.2%

100% Title &
Date

48% 55% 100% 27%

100% All 28.7% 1.2% 100% 7%

Breaking down the table above, we are starting to see definitive gains in our test precision

as we are incorporating these other features using the cutoff approach, but we also are seeing

significant losses in our test recall. Notably, the best cutoff approach tested is the “100% match

of Title and Date” which sees 97.4% Test precision, but only 27% possible matches are included.

Problem 2: Matching Differences

The next question we had is in the best model “100% Title & Date” what do the 55% of

matches look like that are missing? Digging through the data, the table below shows examples of

what the differences are.



Capstone: Fixing Broken Links in Wikipedia 8

Case # IA Title Wikipedia Title

1 the handbook of augmentative and alternative
communication

handbook of augmentative
and alternative
communication

2 the nature of the chemical bond and the structure of
molecules and crystals

the nature of the chemical
bond

3 100 voices an oral history of ayn rand 100 voices an oral history of
ayn rand

In the first case, there is a difference of the word “The” which exists in the IA title, but

not in the wikipedia title. In the second case, the IA displays a descriptive subtitle while the

Wikipedia Citation does not. In the third case, there is an extra space from punctuation that was

removed. The same cleaning algorithm is applied to both titles, so a space existed before and

after the colon in one and only before or after the colon in the other. In order to boost our recall

rate we must find a solution that maintains the high precision rating while boosting our recall

Solution 2: The Levenshtein Distance

To solve our problem, we needed a more flexible matching method than only doing

cleaning and matching exactly - this method could help solve all three cases above. After

research, we found one way to do this was using a text distance metric called the “Levenshtein

Distance” (Levenshtein, 1965) between each feature pair in both Wikipedia and Internet Archive

which would return a number from 0 to 100 where 100 is a perfect match (Seatgeek, n.d.-b). The

Levenshtein Distance is comparable to an edit distance when converting one string to another

subtracted from 100 and capped at 0.

This method was appropriate for our use case because the algorithm is efficient and

applicable to our problem where we often only expect small typo related differences in book title



Capstone: Fixing Broken Links in Wikipedia 9

matching. For visualization purposes, here are some examples from the dataset with various

Levenshtein distances:

String 1 String 2 Levenshtein Distance

anarchism: arguments for and
against

anarchism arguments for and
against

99

the principles of physical
geology

principles of geology 75

encyclopedia of
environmental analysis and
remediation

environmental encyclopedia 50

the girl from the fiction
department a portrait of sonia
orwell

orwell the life 25

In addition to directly applying the Levenstien distance algorithm, there are other ways to

apply it including using partial matching (where some extra characters are ignored in one string

and full matched in the other) and sort matching (where the ordering of the words is ignored).

Partial matching seems like it would be particularly useful to match case #2 in the title distance

table. In the end, both methods were used in our feature engineering process which will be

explained in further detail in that section.



Capstone: Fixing Broken Links in Wikipedia 10

Using a Cutoff of 95 Levenshtein distance, here are our new results:

Method Train Precision Train Recall Test Precision Test Recall

100% Title 17.1% 87% 39.5% 87%

100% Title &
Date

48% 55% 100% 27%

95% Title &
Date

49.4% 54.5% 100% 45%

95% Title &
90% Author &
90% Publisher
& Date

82% 3.3% 100% 7.1%

Problem 3: Optimizing Recall

Using Levenshtein distance, we see some strong gains in our Test Recall metric from

27% to 45%, but hopefully we could do even better. As it stands we are matching less than half

of possible matches, even if we have a high precision.

Additionally, in our current cut off model, year is missing 33% of the time - meaning

33% of the time, books with the same titles will be counted as matches even though they are

different books. It also would be beneficial if we could further utilize publisher and author fields

in our model as they are not yielding very helpful results at their current cutoffs.

Solution 3: Feature Engineering and Machine Learning

To solve this problem, we hypothesized that it would be helpful to try to include the

author and publisher features as we believed they contain key information in a book match. We

found different matching solutions for both features that will be discussed below.



Capstone: Fixing Broken Links in Wikipedia 11

When looking at the publisher field, we noticed a strong pattern in the data:

IA Publisher Wikipedia Publisher Regular Match Partial Match

Garden City, N.Y.,
Anchor Books

Anchor Books 56 100

Edinburgh, Scotland
; San Francisco :
AK Press

AK Press 30 100

Oxford ; New York :
Oxford University
Press

Oxford University
Press

71 100

Detroit :
Gale/Thomson-Gale

Thompson Gale 55 88

The Internet Archive data often includes more descriptive text than the Wikipedia

publisher field. Because of this we decided to apply levenshtein distance partial matching to both

publisher and book title. Where we fully match the less descriptive Wikipedia field and partially



Capstone: Fixing Broken Links in Wikipedia 12

match the more descriptive IA field. The graphs below provide a more full view of the effect of

partial matching specifically on the publisher field.

We can see huge gains for the publisher feature when using partial matching. While for

unmatched records, the distribution (shown below) remains largely the same. We see a spike in

Non-match 100s, but this is likely due to duplicates and sometimes different books have the

same publisher.

We created another feature based on author. Cleaning the author strings originally proved

challenging because of non-consistent formats used in both sources. The author fields for

Wikipedia are split in several fields whereas the Internet Archive has just one long string of

author names in different formats. Sometimes just an initial would be placed for names and



Capstone: Fixing Broken Links in Wikipedia 13

sometimes not. Sometimes the last name would be first, and sometimes not. In order to combat

this issue, we first concatenated wikipedia author fields and used sort matching for author where

the order of the words is disregarded.

IA Author Wikipedia Author Regular Match Sort Match

r. malcolm errington robert malcolm
errington

86 88

rogers van fine
txsatam collection.
john spotswood
antwerp

arnold joseph toynbee 32 54

gilbert m. smith g m smith 72 75

alistair mcmillan
iain mclean

iain mclean alistair
mcmillan

66 100

Using author sort matching did not see as substantial gains as publisher partial matching,

but we did see a 3 point mean increase in Levenshtein distance among matches, and only a 0.5

increase among non-matches.

Note that the partial matching features added were added in addition to the full matched

features. We found that including fully and partially matched features in combination created the

most valuable feature set. Now with a richer feature set, we hypothesized that our problem could

benefit from machine learning algorithms to help us match records as a hard-coded cutoff

algorithm becomes more complicated and less feasible with the more features that are added.

Additionally, a machine learning algorithm could perhaps learn trends that we have not currently

seen from our exploratory data analysis. Before proceeding with modeling it was clear our

training dataset was imbalanced with 4.8% matches and 95.2% non-matches (“Why Does

Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?,” 2015).



Capstone: Fixing Broken Links in Wikipedia 14

To account for this difference, we implemented a custom downsampling algorithm which

grouped queries and sampled 1 non-matched per 1 match. This way there would be

representation of all queries possible. From this point, we followed typical machine learning

workflows using a training and test set, using scaling procedures, cross validation, and

hyperparameter tuning.

Results

We chose 4 different models to test suited for the needs of our classification problem. As

an efficient, robust baseline, we chose the logistic regression model which is typically seen in

binary classification problems. We chose the k - nearest neighbor algorithm which is a popular

clustering based approach. We chose two CART approaches (random forest, gradient boosted

tree model) which can handle missing data without imputation. After choosing these models, we

selected several hyper-parameters which we tuned through cross-validation. A comprehensive

overview of all models and hyper parameters used is included in the appendix.

The table below shows the results after 5 fold cross-validation of the training set.

Model
Name

Training
Accuracy

Training
Precision

Training
Recall

Test
Accuracy

Test
Precision

Test
Recall

GBT 85.5% 84.1% 94.7% 98.9% 95.2% 95.2%

Log Reg 83.1% 82.8% 92.1% 98.2% 94.9% 89.2%

RF 92.3% 91.0% 97.2% 97.4% 94.5% 82.1%

KNN 87.9% 88.0% 93.4% 96.9% 85.8% 86.9%

Baseline
95% Title
+ Year

66.1% 85.9% 54.8% 93.9% 100% 45.2%



Capstone: Fixing Broken Links in Wikipedia 15

This table is sorted based on the best “Test Precision” with GBT as the top model 95%

precision on the golden test set. These results are as expected with many of the models having

higher Test metrics than Training metrics.

After selecting GBT as our favored model, we trained it on all of the data together

(instead of ⅕ of it) and now have the table below as our final model metrics:

Model
Name

Training
Accuracy

Training
Precision

Training
Recall

Test
Accuracy

Test
Precision

Test
Recall

GBT 85.5% 84.3% 94.3% 99.0% 97.5% 94.0%

Our final model shows great utility in scoring highly on Test Precision and only missing

6% of possible matches. With also the consideration that in the golden test set, since it was

created manually, there are only 84 possible matches which means the final model only

misclassified 1 observation as True which as actually False. This model could also be

manipulated for higher precision as we can output a probability from GBT and change the

threshold accordingly. Currently, the threshold is at 50% meaning those with probability over

than 50% of being a match would be considered a match and vice versa. With adjustments to the

threshold, the sponsor can decide exactly how they want to balance recall versus precision.

Limitations and Future Work

We have achieved strong results with 97.5% precision and 94% recall in our final model

which is a substantial start to this problem (We also have a repository with an implementation of

this algorithm here: https://github.com/acbass49/wiki2ia). One limitation of this approach is in

interaction with the API. When we were matching the Wikipedia citations with the Internet

Archive web links, we needed to query the Internet Archive API. We queried with a lowercase

https://github.com/acbass49/wiki2ia


Capstone: Fixing Broken Links in Wikipedia 16

and special character removed version of the book title. One fifth of the time, there were no

results found even though we had a link from the Internet Archive. And, about one third of the

time, results were found, but there was no matching link. This suggests one of two things: first, it

could suggest that these links did exist, but the Internet Archive API needs a more flexible

algorithm to return the result; second, it could suggest that these links that were not returned are

broken links that no longer exist in the internet archive. Either way, it is something that should be

further examined for the improvement of the usefulness of this algorithm and the general health

of Internet Archive API.

Another option for the improvement of the algorithm is improving on the author

matching. Of our primary text features (title, author, publisher), we have the weakest matching

on Author. The table below shows summary statistics on the Levenshtien distance among only

matches in the training data.

Variable Mean Median 25th perc. 75th perc.

Title
Levenshtein
Distance

94 99 99 100

Publisher Partial
Matching

88 100 88 100

Author Sort
Matching

86 100 75 100

As you can see in the table above, author matching has the lowest mean and lowest 25th

percentile of Levenshtein distances among matches. There is opportunity for further work to be

done in text standardization which was most complicated for Authors because of abbreviation,

ordering, and spelling error differences.



Capstone: Fixing Broken Links in Wikipedia 17

Lastly, one option for future work is trying to incorporate other features. Perhaps there

are other features that exist in both Wikipedia citations and the Internet Archive API that would

improve key metrics. For example, we did not account for book versioning, but perhaps there is

enough accurate data in both sources to accurately predict and find the correct book version as

well as a match on the other fields.

Conclusion

Broken book citations on Wikipedia can be a significant problem, but our methodology

offers a solution for fixing them. By using the Internet Archive and various text correlation and

classification models, we have achieved strong results with 97.5% precision and 94% recall in

our final model. This methodology can be used by Wikipedia editors to improve the accuracy

and reliability of the platform's content. Additionally, it will also give many Wikipedia readers

access to books cited in Wikipedia freely available on the Internet Archive website and database.

By ensuring that all citations and references are accurate and up-to-date, we can help maintain

Wikipedia's reputation as a reliable source of information for millions of people around the

world.



Capstone: Fixing Broken Links in Wikipedia 18

Appendix: Model and Grid Search Information

Model Name Grid Search Information

Logistic Regression Penalty: None, L1, and L2

Random Forest Trees: 10, 50, 100, 500
Max depth: None, 3, 5
Max features: None, 2, 3, 4, 5

K Nearest Neighbors N Neighbors: 3, 5, 10, 25

Gradient Boosted Trees Learning rate: 0.1, 0.2, 0.5
Max depth: None, 3, 5
L2 Regularization: 0, 0.01, 0.1



Capstone: Fixing Broken Links in Wikipedia 19

Works Cited

Books : Free Texts : Free Download, Borrow and Streaming : Internet Archive. (n.d.).

https://archive.org/details/books

Levenshtein, V. (1965). Binary codes capable of correcting deletions, insertions and reversals.

Proceedings of the USSR Academy of Sciences, 163(4), 845–848.

http://ci.nii.ac.jp/naid/10012867632

Seatgeek. (n.d.-b). GitHub - seatgeek/thefuzz: Fuzzy String Matching in Python. GitHub.

https://github.com/seatgeek/thefuzz

Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant

Analysis? (2015). IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, 37(5), 1109–1112.

Wikipedia contributors. (n.d.). Template:Cite book - Wikipedia.

https://en.wikipedia.org/wiki/Template:Cite_book

https://archive.org/details/books
http://ci.nii.ac.jp/naid/10012867632
https://github.com/seatgeek/thefuzz
https://en.wikipedia.org/wiki/Template:Cite_book

